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Abstract. A systematic derivation of the Boltzmann equation is presented in the framework of
closed-time-path formalism. Introducing a new type of probe, the expectation value of number
operator is calculated as a functional of source. Then solving for the source by inverting the relation,
the equation of motion for number is obtained when the source is removed, and it turns out to be
the Boltzmann equation. The inversion formula is used in the course of derivation.

In this letter, we present a new approach to derive the Boltzmann equation (BE). There have been
some works on this subject both in the framework of closed-time-path (CTP) formalism [1,2],
and in the framework of thermo-field dynamics [3]. These approaches have an advantage that
the time dependence of the number is not introduced by hand. Instead, a counter-term is first
introduced into the CTP or thermo-field Lagrangian and the bare propagator is calculated.
Then to determine the counter-term, some condition, such as the cancellation of on-shell part
of the self-energy [1,3] or the cancellation of pinch-singularity [2], is adopted, which leads to
the BE. Since their primal purpose is to construct the non-equilibrium perturbation theory, the
BE appears as a byproduct. It is preferable if we can derive the BE more directly as an equation
of motion (EM) of expectation value of the number operator. Moreover, in these approaches,
the condition to determine the counter-term is of course not unique, and the approximation
made is not so clear. In the following, a more direct approach is studied based on the inversion
method [4, 5]. A new type of probe dictated from the counter-term approach is introduced in
the course of the derivation.

Let us briefly describe the inversion method which is a systematic procedure to derive the
EM in CTP formalism. In CTP formalism [6, 7], we introduce a time-dependent sourceJ to
probe some operator of interest, sayQ(ϕ̂), which is a function of the dynamical variablêϕ.
Then with the HamiltonianĤ of ϕ̂, the CTP generating functional is defined as

e
i
h̄
W [J1,J2] ≡ Tr T e−

i
h̄

∫ tF
tI

dt (Ĥ−J1(t)Q̂)ρ̂ T̃ e
i
h̄

∫ tF
tI dt (Ĥ − J2(t)Q̂) (1)

∝
∫

[dϕ1 dϕ2]〈ϕ1I |ρ̂|ϕ2I〉e
i
h̄

∫ tF
tI dt (L(ϕ1)− L(ϕ2) + J1Q(ϕ1)− J2Q(ϕ2)) (2)

whereρ̂ is the initial distribution andT andT̃ are the time ordering and anti-ordering operators,
respectively. The last equality is due to path-integral representation, whereϕ1 andϕ2 are
respectively introduced as integral variables along the forward and backward time branches.

For convenience of later discussion, let us introduce ‘physical’ representation [7] through
JC ≡ 1

2(J1 +J2), andJ1 ≡ J1− J2. ThenJ1 = 0 is physical andJC plays the role of external
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force. The expectation value of̂Q at time t under physical external sourceJC = J can be
calculated as

Q(t) ≡ δW [J1, JC]

δJ1(t)

∣∣∣∣ JC=J
J1=0

= 〈Q̂(t)〉J . (3)

This gives us the expectation valueQ as a functional of external sourceJ .
In order to obtain the EM ofQ, we solve relation (3) inversely to expressJ as a functional

of Q. Then setting the external sourceJ = 0, the obtained relation gives the EM ofQ.
(Inversion method, [5].) Formally, the general expression of the EM can be written with
the Legendre transformation ofW . But practically, the process of Legendre transformation
is unnecessary and, in this letter, this inversion is carried out in the following perturbative
fashion.

UsuallyQ as a functional ofJ is obtained as some perturbation series

Q(t) = f [t; J ] =
∑
n

εnf (n)[t; J ] (4)

whereε is a small parameter andf [t; J ] expresses thatf is a function oft and functional of
J . Then, if we write the inverted relation as

J (t) = g[t;Q] =
∑
m

εmg(m)[t; q] (5)

the following simple identity is obtained:

Q(t) = f [t; g[Q]] = f (0)[t; g(0)[Q]]

+ε

(∫
ds
δf (0)(t)

δg(0)(s)
g(1)[s;Q] + f (1)[t; g(0)[Q]]

)
+ε2

(∫
ds
δf (0)(t)

δg(0)(s)
g(2)[s;Q]

+
1

2

∫
ds ds ′

δ2f (0)(t)

δg(0)(s)δg(0)(s ′)
g(1)[s;Q]g(1)[s ′;Q]

+
∫

ds
δf (1)(t)

δg(0)(s)
g(1)[s;Q] + f (2)[t; g(0)[Q]]

)
+ O(ε3) (6)

where, for example,δf (0)[t; J ]/δJ (s) evaluated atJ = g(0)[Q] is abbreviated as
δf (0)(t)/δg(0)(s). Comparing the lhs and rhs in each order ofε, we obtain the expressions for
g(m) in terms off (n), which we call the ‘inversion formulae’ [5]:

g(0)[t; q] = f (0)−1
[t; q] (7)

g(1)[t; q] = −
∫

dt ′
(
δf (0)

δg(0)

)−1

(t, t ′)f (1)[t ′; g(0)] (8)

g(2)[t; q] = −
∫

dt ′
(
δf (0)

δg(0)

)−1

(t, t ′)
(

1

2

∫
ds ds ′

δ2f (0)(t ′)
δg(0)(s)δg(0)(s ′)

g(1)[s;Q]g(1)[s ′;Q]

+
∫

ds
δf (1)(t ′)
δg(0)(s)

g(1)[s;Q] + f (2)[t ′; g(0)]
)
. (9)

First of all, to make this method work, we need a non-trivial lowest-order functional
expressionf (0)[t; J ] which can be inversely solved forJ . This becomes the key-point for
deriving the BE. If we naively apply this method to the number operator, the expectation value
does not reveal such non-trivial dependence onJ .
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Let us examine the problem more closely. We consider a non-relativistic Boson field of a
homogeneous system described by the HamiltonianH = H0 +Hint with H0 =

∑
k εkψ̂

†
kψ̂k,

andHint = λ
4

∑
k,k′,q ψ̂

†
k+qψ̂

†
k′−qψ̂kψ̂k′ , whereλ is a coupling constant, which is assumed to be

small and plays the role ofε in (4). Extension to other types of interaction is straightforward.
For the initial density matrix̂ρ, we assume that no initial correlation exists among the different
wavenumber components andρ̂ can be written as a product form

∏
k ρ̂k, whereρ̂k is a density

for each wavenumber which givesnk(tI) = Tr ρ̂kψ̂
†
kψ̂k.

In order to derive the EM of the expectation value of the numbern̂k(t) = ψ̂†
k(t)ψ̂k(t), a

naive choice of the source iŝH −∑k Jk(t)ψ̂
†
k(t)ψ̂k(t). Then, in path-integral representation

of the CTP generating functional, this source can be built into the free part of the Lagrangian
as

LJ0 (ψ1)− LJ0 (ψ2) =
∑
k

ψ∗i,kDij,kψj,k (10)

with the matrix

Dk(t, ∂t ) ≡
(

ih̄∂t − εk + Jk(t) 0
0 −ih̄∂t + εk − Jk(t)

)
. (11)

The bare propagator is essentially the inverse of the matrix in (11), and with this propagator, if
we evaluate the expectation valuenk(t) in the absence of interaction, we just obtain the initial
value〈n̂k(t)〉J = nk(tI), due to the conservation ofn̂k for λ = 0 even whenJk 6= 0. Since
no dependence onJ appears, we fail to obtain the inversion in lowest order, and hence the
inversion formulae cannot be used in this case. A probe of the form (11) is not enough to
handle the number operator.

Then why does the counter-term method work? According to [1], the time-local counter-
term is constructed so as to keep the following structure of the full propagator in CTP formalism
(we suppress the index of wavenumber for a while):

G(t, s) ≡ −Tr ρ̂

(
T ψ̂(t)ψ̂†(s) ψ̂†(s)ψ̂(t)

ψ̂(t)ψ̂†(s) T̃ ψ̂(t)ψ̂†(s)

)
c

= θ(t − s)
(
h(t, s) k(t, s)

h(t, s) k(t, s)

)
+ θ(s − t)

(
k∗(s, t) k∗(s, t)
h∗(s, t) h∗(s, t)

)
(12)

where ‘c’ means the connected part and

h(t, s) ≡ −〈ψ̂(t)ψ̂†(s)〉c k(t, s) ≡ −〈ψ̂†(s)ψ̂(t)〉c. (13)

Then it turns out that the counter-termψ∗iMijψj with the matrix

M(t) =
(
h̄1ω(t)− iα(t) −i(h̄γ (t)− α(t))
i(h̄γ (t) + α(t)) −h̄1ω(t)− iα(t)

)
(14)

is allowed to be subtracted from the free part of the Lagrangian, where1ω, α andγ are all
real functions which are determined by appropriate conditions. The bare propagator calculated
fromL0(ψ1)−L0(ψ2)−ψ∗iMijψj leads to non-trivial time dependence of the number in the
absence of interaction. The existence of the parameters in non-diagonal elements is a crucial
point.

Comparing (14) with (11), the parameter we have utilized as a physical external source
in (11) corresponds to1ω in (14). Equation (14), however, suggests that another physical
source corresponding toα or γ can be introduced as a probe. Our choice here is the source
corresponding toα. (The source corresponding toγ can be treated similarly.) Then the free
part of the Lagrangian including the source now has the matrix

D(t, ∂t ) =
(

ih̄∂t − ε + iJ (t) −iJ (t)
−iJ (t) −ih̄∂t + ε + iJ (t)

)
. (15)
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Note that although the sourceJ is introduced in this way, what we calculate in the following
is just the expectation value of the number; we integrateψ∗1 (t + ε)ψ1(t) under the existence
of the probe (15). (Of course other choices, for example,ψ∗2 (t − ε)ψ2(t), produce the same
results.)

From the matrix (15), the bare propagatorG0 is calculated by

D(t, ∂t )G0(t, s) = G0(t, s)D(s,−
↼

∂ s) (16)

= −ih̄δ(t − s). (17)

SinceD has been chosen so as to keep the structure (12) unchanged,G0 has the same structure
in whichh andk are replaced byh0 andk0, respectively. Then (17) leads to the equations

(ih̄∂t − ε)h0(t, s) = 0 (18)

(ih̄∂t − ε)k0(t, s) = 0 (19)

for t > s, and

(ih̄∂t − ε + iJ (t))k∗0(s, t) = iJ (t)h∗0(s, t) (20)

(ih̄∂t − ε − iJ (t))h∗0(s, t) = −iJ (t)k∗0(s, t) (21)

for s > t . The boundary conditions att = s are given as

h0(s, s)− k∗0(s, s) = −1 k0(s, s)− h∗0(s, s) = 1 (22)

h0(s, s)− h∗0(s, s) = 0 k0(s, s)− k∗0(s, s) = 0. (23)

From (23),h0(s, s) andk0(s, s) are real functions. Then the two conditions in (22) are
identical and simply express the fact that the expectation value of the equal-time commutator
[ψ̂, ψ̂†] is unity. Note that from definition (13),k0(t, t) gives the expectation value of the
number operator (multiplied by−1) in the absence of interaction, which we denote asn(0)(t).

From (18) and (19), we obtain fort > s

k0(t, s) = e−
i
h̄
ε(t−s)k0(s, s) = −n(0)(s)e− i

h̄
ε(t−s) (24)

h0(t, s) = e−
i
h̄
ε(t−s)h0(s, s) = −(n(0)(s) + 1)e−

i
h̄
ε(t−s). (25)

Then, exchangingt ands in (24) and (25) and taking the complex conjugation,h∗0(s, t) and
k∗0(s, t) are obtained fors > t . Substituting them into (20) or (21), both equations turn out to
give an identical result, and we find thatn(0) must satisfy the condition

J (t) = h̄∂tn(0)(t) (26)

which gives the EM forn(0) and is integrated as

n(0)[t; J ] = n(0)(tI) +
∫ t

tI

ds
J (s)

h̄
. (27)

Equations (24), (25) and (27) determine the bare propagatorG0 with the structure (12) in which
h andg are replaced byh0 andg0, respectively.

As already seen from (27) or (26), we succeeded in making the expectation value of
the number depend onJ in the lowest order, i.e. O(λ0). This makes the inversion formula
applicable. The rhs of equation (27) corresponds to the desired lowest-order functionalf (0)

in (4), and (26) is the inverted relation, the rhs of which corresponds tog(0) of (5). So our
next task is to calculate the perturbative correction ton, and then to derive the correction to
the EM (26) with the aid of the inversion formulae.

With the propagator calculated above, the non-zero perturbative correction tonk(t) first
comes from a diagram shown in figure 1, which is of O(λ2). The contributions of O(λ) from a
tadpole-type self-energy insertion vanishes due to the cancellation of terms from the vertices
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Figure 1. Diagram for O(λ2) correction tonk.

on forward and backward time branches. Similarly, the diagram with the two tadpoles insertion
vanishes, and only the diagram of figure 1 retains in O(λ2). As a result,

nk[t, J ] = n(0)k (t) +

(
λ

h̄

)2∑
q,q′

∫ t

tI

dt ′
∫ t ′

tI

ds ′ cos(ωk,q,q′(t
′ − s ′))

×{(n(0)k + 1)(n(0)q+q′−k + 1)n(0)q n
(0)
q′ − n(0)k n(0)q+q′−k(n

(0)
q + 1)(n(0)q′ + 1)}(s ′) (28)

whereωk,q,q′ ≡ 1
h̄
(εq + εq′ − εq+q′−k − εk). Recall that alln(0)k are functionals ofJk given

in (27). Equation (28) corresponds tof (0) + εf (1) + ε2f (2) of (4), wheref (1) vanishes as
mentioned above.

Applying the inversion formulae, we obtain the correction to (26) as

Jk(t) = h̄∂tnk(t)− λ
2

h̄

∑
q,q′

∫ t

tI

ds cos(ωk,q,q′(t − s))

×{(nk + 1)(nq+q′−k + 1)nqnq′ − nknq+q′−k(nq + 1)(nq′ + 1)}(s). (29)

Note that, in course of the inversion, all the functionals ofJ are evaluated atJk = h̄ṅk and
thatn(0)k [t; J ] contained therein becomesnk(t). If we set the external sourceJ = 0, the EM
for the number is obtained. The correction term is similar to the collision terms of the BE, but
it has non-Markovian form and contains an energy non-conserving process.

The ordinary Markovian BE is obtained by the adiabatic expansion. Setting the initial
time tI = −∞, we abbreviate the products ofn andn + 1 in the integrand of (29) asN(2) and
expand it around the timet asN(2)(s) = N(2)(t) + (s − t)Ṅ (2)(t) + · · ·, regarding the time
differentiations to be small. Then the integral becomes∫ t

−∞
ds cosω(t − s)N(2)(s) = πδ(ω)N(2)(t) +

℘

ω2
Ṅ (2)(t) + · · · . (30)

The second term is proportional toṅ and gives a perturbative correction to the coefficient of
the first term in the rhs of (29), which can be neglected. Regarding all higher time derivatives
to be small, we take into account up to the first term of (30), and obtain the ordinary time-local
BE with energy conserving process

h̄∂tnk(t) = πλ2
∑
q,q′

δ(εq + εq′ − εq+q′−k − εk)

×{(nk + 1)(nq+q′−k + 1)nqnq′ − nknq+q′−k(nq + 1)(nq′ + 1)}(t). (31)

The key-point of our derivation is the new type of probe introduced in (15). After
that, the application of inversion formula is straightforward. Of course with the usage of
higher-order inversion formulae [5], we can calculate higher-order corrections to the EM quite
systematically. This will be presented elsewhere.
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The physical content of (15) becomes somewhat clearer if we consider the effective action
of ψ . From the CTP generating functionalW with ψ itself as the order parameterQ, the
effective action0[ψ1,ψC] is calculated through the Legendre transformation ofW , where
ψ1 ≡ δW/δJC andψC ≡ δW/δJ1. Roughly speaking,ψ1 = ψ1 − ψ2, ψC = 1

2(ψ1 + ψ2)

andD is the tree part of second derivative of0. Then the source of the form (15) couples
toψ∗1ψ1 and corresponds to the quantityδ20/δψ∗1δψ1 which is the one-particle-irreducible
amputated part of the correlation function〈{ψ̂†, ψ̂}〉. This may be the reason why we can
handle the number with this source. Another choice of the source corresponding toγ in (14)
also produces non-trivial time dependence in the lowest order and the EM can be derived.
Although the result has somewhat complicated expression, it agrees with (31) after adiabatic
expansion.

The author is grateful to Professor R Fukuda for helpful discussions.
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